1/31/23
mutate()filter()ggplot(data, aes())+Factors: factor(variable, levels = c(...), labels = c(...))
Logical Data: TRUE or FALSE
Remove missing data with na.rm = TRUE arugment
| Categorical | Numeric | |
|---|---|---|
| Categorical |
|
|
| Numeric |
|

ifelse() function
ifelse(condition, output, output2)
df <- df %>%
mutate(nocturnal = ifelse(lubridate::hour(Timestamp)<12,
"morning person",
"nocturnal"))
df$nocturnal [1] "morning person" "morning person" "morning person" "morning person"
[5] "nocturnal" "nocturnal" "nocturnal" "morning person"
[9] "morning person" "morning person" "morning person" "morning person"
[13] "nocturnal"
x&y checks whether both x AND y are TRUEx|y checks whether either x OR y is TRUEdf <- df %>%
mutate(nocturnal_coder = ifelse(
lubridate::hour(Timestamp)<12&code_experience=="Yes",
"Not Nocturnal Coder",
"Nocturnal Coder"))
df$nocturnal_coder[1:7][1] "Nocturnal Coder" "Not Nocturnal Coder" "Nocturnal Coder"
[4] "Not Nocturnal Coder" "Nocturnal Coder" "Nocturnal Coder"
[7] "Nocturnal Coder"
TRUE
!condition means NOT conditioncase_when(): tidyverse function to check multiple conditions sequentiallydf <- df %>%
mutate(code_interests =
case_when(code_experience=="Yes"&american_pol==1~"AP Coder",
code_experience=="Yes"&comparative_pol==1~"CP Coder",
code_experience=="Yes"&international_rel==1~"IR Coder",
T~"Other"))
df$code_interests [1] "Other" "CP Coder" "Other" "AP Coder" "AP Coder" "AP Coder"
[7] "Other" "Other" "AP Coder" "AP Coder" "Other" "AP Coder"
[13] "Other"
select()# A tibble: 2 × 2
year python_exp
<chr> <dbl>
1 Junior 0
2 Sophomore 1
dplyr functionsdata tabDownload Dataparty_code variable, so it reads “D”, “R” instead of “100”, “200”party_code variable, so it reads “D”, “R” instead of “100”, “200”party_code variable, so it reads “D”, “R” instead of “100”, “200”nominate_dim1
datasummary_skim() to summarize the numeric variables
modelsummary packagenominate_dim1
datasummary to summarize nominate_dim1 and nominate_dim2
modelsummary packagenominate_dim1 filled by partynominate_dim2 against nominate_dim1nominate_dim2 against nominate_dim1group_by() function in tidyverse to group our data by given variablessummarize() and desired function to create new function
mutate()nominate_dim1 by Congress and party?
Summarizing Data